
Chapter 9

PSPACE: A Class of Problems
beyond NP

Throughout the book, one of the main issues has been the notion of time as a

computational resource. It was this notion that formed the basis for adopting

polynomial time as our working definition of efficiency; and, implicitly, it

underlies the distinction between P and NP. To some extent, we have also

been concerned with the space (i.e., memory) requirements of algorithms. In

this chapter, we investigate a class of problems defined by treating space as

the fundamental computational resource. In the process, we develop a natural

class of problems that appear to be even harder than NP and co-NP.

9.1 PSPACE
The basic class we study is PSPACE, the set of all problems that can be solved

by an algorithm with polynomial space complexity—that is, an algorithm that

uses an amount of space that is polynomial in the size of the input.

We begin by considering the relationship of PSPACE to classes of problems

we have considered earlier. First of all, in polynomial time, an algorithm can

consume only a polynomial amount of space; so we can say

(9.1) P ⊆ PSPACE.

But PSPACE is much broader than this. Consider, for example, an algorithm

that just counts from 0 to 2n − 1 in base-2 notation. It simply needs to

implement an n-bit counter, which it maintains in exactly the same way one

increments an odometer in a car. Thus this algorithm runs for an exponential

amount of time, and then halts; in the process, it has used only a polynomial

amount of space. Although this algorithm is not doing anything particularly



532 Chapter 9 PSPACE: A Class of Problems beyond NP

interesting, it illustrates an important principle: Space can be reused during a

computation in ways that time, by definition, cannot.

Here is a more striking application of this principle.

(9.2) There is an algorithm that solves 3-SAT using only a polynomial amount

of space.

Proof. We simply use a brute-force algorithm that tries all possible truth

assignments; each assignment is plugged into the set of clauses to see if it

satisfies them. The key is to implement this all in polynomial space.

To do this, we increment an n-bit counter from 0 to 2n − 1 just as described

above. The values in the counter correspond to truth assignments in the

following way: When the counter holds a value q, we interpret it as a truth

assignment ν that sets xi to be the value of the ith bit of q.

Thus we devote a polynomial amount of space to enumerating all possible

truth assignments ν. For each truth assignment, we need only polynomial

space to plug it into the set of clauses and see if it satisfies them. If it does

satisfy the clauses, we can stop the algorithm immediately. If it doesn’t, we

delete the intermediate work involved in this “plugging in” operation and reuse

this space for the next truth assignment. Thus we spend only polynomial space

cumulatively in checking all truth assignments; this completes the bound on

the algorithm’s space requirements.

Since 3-SAT is an NP-complete problem, (9.2) has a significant conse-

quence.

(9.3) NP ⊆ PSPACE.

Proof. Consider an arbitrary problem Y in NP. Since Y ≤P 3-SAT, there is

an algorithm that solves Y using a polynomial number of steps plus a poly-

nomial number of calls to a black box for 3-SAT. Using the algorithm in (9.2)

to implement this black box, we obtain an algorithm for Y that uses only

polynomial space.

Just as with the class P, a problem X is in PSPACE if and only if its

complementary problem X is in PSPACE as well. Thus we can conclude that

co-NP ⊆ PSPACE. We draw what is known about the relationships among these

classes of problems in Figure 9.1.

Given that PSPACE is an enormously large class of problems, containing

both NP and co-NP, it is very likely that it contains problems that cannot

be solved in polynomial time. But despite this widespread belief, amazingly



9.2 Some Hard Problems in PSPACE 533

PSPACE

co–

Figure 9.1 The subset relationships among various classes of problems. Note that we

don’t know how to prove the conjecture that all of these classes are different from one

another.

it has not been proven that P �= PSPACE. Nevertheless, the nearly universal

conjecture is that PSPACE contains problems that are not even in NP or co-NP.

9.2 Some Hard Problems in PSPACE
We now survey some natural examples of problems in PSPACE that are not

known—and not believed—to belong to NP or co-NP.

As was the case with NP, we can try understanding the structure of

PSPACE by looking for complete problems—the hardest problems in the class.

We will say that a problem X is PSPACE-complete if (i) it belongs to PSPACE;

and (ii) for all problems Y in PSPACE, we have Y ≤P X.

It turns out, analogously to the case of NP, that a wide range of natural

problems are PSPACE-complete. Indeed, a number of the basic problems in

artificial intelligence are PSPACE-complete, and we describe three genres of

these here.

Planning

Planning problems seek to capture, in a clean way, the task of interacting

with a complex environment to achieve a desired set of goals. Canonical

applications include large logistical operations that require the movement of

people, equipment, and materials. For example, as part of coordinating a

disaster-relief effort, we might decide that twenty ambulances are needed at a

particular high-altitude location. Before this can be accomplished, we need to

get ten snowplows to clear the road; this in turn requires emergency fuel and

snowplow crews; but if we use the fuel for the snowplows, then we may not

have enough for the ambulances; and . . . you get the idea. Military operations



534 Chapter 9 PSPACE: A Class of Problems beyond NP

also require such reasoning on an enormous scale, and automated planning

techniques from artificial intelligence have been used to great effect in this

domain as well.

One can see very similar issues at work in complex solitaire games such

as Rubik’s Cube or the fifteen-puzzle—a 4 × 4 grid with fifteen movable tiles

labeled 1, 2, . . . , 15, and a single hole, with the goal of moving the tiles around

so that the numbers end up in ascending order. (Rather than ambulances and

snowplows, we now are worried about things like getting the tile labeled 6

one position to the left, which involves getting the 11 out of the way; but

that involves moving the 9, which was actually in a good position; and so

on.) These toy problems can be quite tricky and are often used in artificial

intelligence as a test-bed for planning algorithms.

Having said all this, how should we define the problem of planning

in a way that’s general enough to include each of these examples? Both

solitaire puzzles and disaster-relief efforts have a number of abstract features

in common: There are a number of conditions we are trying to achieve and a set

of allowable operators that we can apply to achieve these conditions. Thus we

model the environment by a set C = {C1, . . . , Cn} of conditions: A given state

of the world is specified by the subset of the conditions that currently hold. We

interact with the environment through a set {O1, . . . , Ok} of operators. Each

operator Oi is specified by a prerequisite list, containing a set of conditions

that must hold for Oi to be invoked; an add list, containing a set of conditions

that will become true after Oi is invoked; and a delete list, containing a set of

conditions that will cease to hold after Oi is invoked. For example, we could

model the fifteen-puzzle by having a condition for each possible location of

each tile, and an operator to move each tile between each pair of adjacent

locations; the prerequisite for an operator is that its two locations contain the

designated tile and the hole.

The problem we face is the following: Given a set C0 of initial conditions,

and a set C∗ of goal conditions, is it possible to apply a sequence of operators

beginning with C0 so that we reach a situation in which precisely the conditions

in C∗ (and no others) hold? We will call this an instance of the Planning

Problem.

Quantification

We have seen, in the 3-SAT problem, some of the difficulty in determining

whether a set of disjunctive clauses can be simultaneously satisfied. When we

add quantifiers, the problem appears to become even more difficult.

Let �(x1, . . . , xn) be a Boolean formula of the form

C1 ∧ C2 ∧ . . . ∧ Ck,



9.2 Some Hard Problems in PSPACE 535

where each Ci is a disjunction of three terms (in other words, it is an instance

of 3-SAT). Assume for simplicity that n is an odd number, and suppose we ask

∃x1∀x2
. . . ∃xn−2∀xn−1∃xn�(x1, . . . , xn)?

That is, we wish to know whether there is a choice for x1, so that for both

choices of x2, there is a choice for x3, and so on, so that � is satisfied. We will

refer to this decision problem as Quantified 3-SAT (or, briefly, QSAT).

The original 3-SAT problem, by way of comparison, simply asked

∃x1∃x2
. . . ∃xn−2∃xn−1∃xn�(x1, . . . , xn)?

In other words, in 3-SAT it was sufficient to look for a single setting of the

Boolean variables.

Here’s an example to illustrate the kind of reasoning that underlies an

instance of QSAT. Suppose that we have the formula

�(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

and we ask

∃x1∀x2∃x3�(x1, x2, x3)?

The answer to this question is yes: We can set x1 so that for both choices of

x2, there is a way to set x3 so that � is satisfied. Specifically, we can set x1 = 1;

then if x2 is set to 1, we can set x3 to 0 (satisfying all clauses); and if x2 is set

to 0, we can set x3 to 1 (again satisfying all clauses).

Problems of this type, with a sequence of quantifiers, arise naturally as a

form of contingency planning—we wish to know whether there is a decision

we can make (the choice of x1) so that for all possible responses (the choice

of x2) there is a decision we can make (the choice of x3), and so forth.

Games

In 1996 and 1997, world chess champion Garry Kasparov was billed by the

media as the defender of the human race, as he faced IBM’s program Deep Blue

in two chess matches. We needn’t look further than this picture to convince

ourselves that computational game-playing is one of the most visible successes

of contemporary artificial intelligence.

A large number of two-player games fit naturally into the following frame-

work. Players alternate moves, and the first one to achieve a specific goal wins.

(For example, depending on the game, the goal could be capturing the king,

removing all the opponent’s checkers, placing four pieces in a row, and so on.)

Moreover, there is often a natural, polynomial, upper bound on the maximum

possible length of a game.



536 Chapter 9 PSPACE: A Class of Problems beyond NP

The Competitive Facility Location Problem that we introduced in Chapter 1

fits naturally within this framework. (It also illustrates the way in which games

can arise not just as pastimes, but through competitive situations in everyday

life.) Recall that in Competitive Facility Location, we are given a graph G, with

a nonnegative value bi attached to each node i. Two players alternately select

nodes of G, so that the set of selected nodes at all times forms an independent

set. Player 2 wins if she ultimately selects a set of nodes of total value at least

B, for a given bound B; Player 1 wins if he prevents this from happening. The

question is: Given the graph G and the bound B, is there a strategy by which

Player 2 can force a win?

9.3 Solving Quantified Problems and Games in
Polynomial Space

We now discuss how to solve all of these problems in polynomial space. As

we will see, this will be trickier—in one case, a lot trickier—than the (simple)

task we faced in showing that problems like 3-SAT and Independent Set belong

to NP.

We begin here with QSAT and Competitive Facility Location, and then

consider Planning in the next section.

Designing an Algorithm for QSAT

First let’s show that QSAT can be solved in polynomial space. As was the case

with 3-SAT, the idea will be to run a brute-force algorithm that reuses space

carefully as the computation proceeds.

Here is the basic brute-force approach. To deal with the first quantifier ∃x1,

we consider both possible values for x1 in sequence. We first set x1 = 0 and

see, recursively, whether the remaining portion of the formula evaluates to 1.

We then set x1 = 1 and see, recursively, whether the remaining portion of the

formula evaluates to 1. The full formula evaluates to 1 if and only if either of

these recursive calls yields a 1—that’s simply the definition of the ∃ quantifier.

This is essentially a divide-and-conquer algorithm, which, given an input

with n variables, spawns two recursive calls on inputs with n − 1 variables

each. If we were to save all the work done in both these recursive calls, our

space usage S(n) would satisfy the recurrence

S(n) ≤ 2S(n − 1) + p(n),

where p(n) is a polynomial function. This would result in an exponential

bound, which is too large.



9.3 Solving Quantified Problems and Games in Polynomial Space 537

Fortunately, we can perform a simple optimization that greatly reduces

the space usage. When we’re done with the case x1 = 0, all we really need

to save is the single bit that represents the outcome of the recursive call; we

can throw away all the other intermediate work. This is another example of

“reuse”—we’re reusing the space from the computation for x1 = 0 in order to

compute the case x1 = 1.

Here is a compact description of the algorithm.

If the first quantifier is ∃ xi then

Set xi = 0 and recursively evaluate the quantified expression

over the remaining variables

Save the result (0 or 1) and delete all other intermediate work

Set xi = 1 and recursively evaluate the quantified expression

over the remaining variables

If either outcome yielded an evaluation of 1, then

return 1

Else return 0

Endif

If the first quantifier is ∀ xi then

Set xi = 0 and recursively evaluate the quantified expression

over the remaining variables

Save the result (0 or 1) and delete all other intermediate work

Set xi = 1 and recursively evaluate the quantified expression

over the remaining variables

If both outcomes yielded an evaluation of 1, then

return 1

Else return 0

Endif

Endif

Analyzing the Algorithm

Since the recursive calls for the cases x1 = 0 and x1 = 1 overwrite the same

space, our space requirement S(n) for an n-variable problem is simply a

polynomial in n plus the space requirement for one recursive call on an (n − 1)-

variable problem:

S(n) ≤ S(n − 1) + p(n),

where again p(n) is a polynomial function. Unrolling this recurrence, we get

S(n) ≤ p(n) + p(n − 1) + p(n − 2) + . . . + p(1) ≤ n · p(n).



538 Chapter 9 PSPACE: A Class of Problems beyond NP

Since p(n) is a polynomial, so is n · p(n), and hence our space usage is

polynomial in n, as desired.

In summary, we have shown the following.

(9.4) QSAT can be solved in polynomial space.

Extensions: An Algorithm for Competitive Facility Location

We can determine which player has a forced win in a game such as Competitive

Facility Location by a very similar type of algorithm.

Suppose Player 1 moves first. We consider all of his possible moves in

sequence. For each of these moves, we see who has a forced win in the resulting

game, with Player 2 moving first. If Player 1 has a forced win in any of them,

then Player 1 has a forced win from the initial position. The crucial point,

as in the QSAT algorithm, is that we can reuse the space from one candidate

move to the next; we need only store the single bit representing the outcome.

In this way, we only consume a polynomial amount of space plus the space

requirement for one recursive call on a graph with fewer nodes. As in the case

of QSAT, we get the recurrence

S(n) ≤ S(n − 1) + p(n)

for a polynomial p(n).

In summary, we have shown the following.

(9.5) Competitive Facility Location can be solved in polynomial space.

9.4 Solving the Planning Problem in
Polynomial Space

Now we consider how to solve the basic Planning Problem in polynomial

space. The issues here will look quite different, and it will turn out to be a

much more difficult task.

The Problem

Recall that we have a set of conditions C = {C1, . . . , Cn} and a set of operators

{O1, . . . , Ok}. Each operator Oi has a prerequisite list Pi, an add list Ai, and

a delete list Di. Note that Oi can still be applied even if conditions other than

those in Pi are present; and it does not affect conditions that are not in Ai or Di.

We define a configuration to be a subset C′ ⊆ C; the state of the Planning

Problem at any given time can be identified with a unique configuration C′



9.4 Solving the Planning Problem in Polynomial Space 539

consisting precisely of the conditions that hold at that time. For an initial

configuration C0 and a goal configuration C∗, we wish to determine whether

there is a sequence of operators that will take us from C0 to C∗.

We can view our Planning instance in terms of a giant, implicitly defined,

directed graph G. There is a node of G for each of the 2n possible configurations

(i.e., each possible subset of C); and there is an edge of G from configuration

C′ to configuration C′′ if, in one step, one of the operators can convert C′ to C′′.

In terms of this graph, the Planning Problem has a very natural formulation:

Is there a path in G from C0 to C∗? Such a path corresponds precisely to a

sequence of operators leading from C0 to C∗.

It’s possible for a Planning instance to have a short solution (as in the

example of the fifteen-puzzle), but this need not hold in general. That is,

there need not always be a short path in G from C0 to C∗. This should not be

so surprising, since G has an exponential number of nodes. But we must be

careful in applying this intuition, since G has a special structure: It is defined

very compactly in terms of the n conditions and k operators.

(9.6) There are instances of the Planning Problem with n conditions and k

operators for which there exists a solution, but the shortest solution has length

2n − 1.

Proof. We give a simple example of such an instance; it essentially encodes

the task of incrementing an n-bit counter from the all-zeros state to the all-ones

state.

. We have conditions C1, C2, . . . , Cn.

. We have operators Oi for i = 1, 2, . . . , n.

. O1 has no prerequisites or delete list; it simply adds C1.

. For i > 1, Oi requires Cj for all j < i as prerequisites. When invoked, it

adds Ci and deletes Cj for all j < i.

Now we ask: Is there a sequence of operators that will take us from C0 = φ to

C∗ = {C1, C2, . . . , Cn}?

We claim the following, by induction on i:

From any configuration that does not contain Cj for any j ≤ i, there exists

a sequence of operators that reaches a configuration containing Cj for all

j ≤ i; but any such sequence has at least 2i − 1 steps.

This is clearly true for i = 1. For larger i, here’s one solution.

. By induction, achieve conditions {Ci−1, . . . , C1} using operators O1, . . . ,

Oi−1.

. Now invoke operator Oi, adding Ci but deleting everything else.



540 Chapter 9 PSPACE: A Class of Problems beyond NP

. Again, by induction, achieve conditions {Ci−1, . . . , C1} using operators

O1, . . . , Oi−1. Note that condition Ci is preserved throughout this process.

Now we take care of the other part of the inductive step—that any such

sequence requires at least 2i − 1 steps. So consider the first moment when Ci

is added. At this step, Ci−1, . . . , C1 must have been present, and by induction,

this must have taken at least 2i−1 − 1 steps. Ci can only be added by Oi,

which deletes all Cj for j < i. Now we have to achieve conditions {Ci−1, . . . , C1}

again; this will take another 2i−1 − 1 steps, by induction, for a total of at least

2(2i−1 − 1) + 1= 2i − 1 steps.

The overall bound now follows by applying this claim with i = n.

Of course, if every “yes” instance of Planning had a polynomial-length

solution, then Planning would be in NP—we could just exhibit the solution.

But (9.6) shows that the shortest solution is not necessarily a good certificate

for a Planning instance, since it can have a length that is exponential in the

input size.

However, (9.6) describes essentially the worst case, for we have the

following matching upper bound. The graph G has 2n nodes, and if there is a

path from C0 to C∗, then the shortest such path does not visit any node more

than once. As a result, the shortest path can take at most 2n − 1 steps after

leaving C0.

(9.7) If a Planning instance with n conditions has a solution, then it has one

using at most 2n − 1 steps.

Designing the Algorithm

We’ve seen that the shortest solution to the Planning Problem may have length

exponential in n, which is bad news: After all, this means that in polynomial

space, we can’t even store an explicit representation of the solution. But this

fact doesn’t necessarily close out our hopes of solving an arbitrary instance

of Planning using only polynomial space. It’s possible that there could be an

algorithm that decides the answer to an instance of Planning without ever

being able to survey the entire solution at once.

In fact, we now show that this is the case: we design an algorithm to solve

Planning in polynomial space.

Some Exponential Approaches To get some intuition about this problem,

we first consider the following brute-force algorithm to solve the Planning

instance. We build the graph G and use any graph connectivity algorithm—

depth-first search or breadth-first search—to decide whether there is a path

from C0 to C∗.



9.4 Solving the Planning Problem in Polynomial Space 541

Of course, this algorithm is too brute-force for our purposes; it takes

exponential space just to construct the graph G. We could try an approach in

which we never actually build G, and just simulate the behavior of depth-first

search or breadth-first search on it. But this likewise is not feasible. Depth-first

search crucially requires us to maintain a list of all the nodes in the current

path we are exploring, and this can grow to exponential size. Breadth-first

requires a list of all nodes in the current “frontier” of the search, and this too

can grow to exponential size.

We seem stuck. Our problem is transparently equivalent to finding a path

in G, and all the standard path-finding algorithms we know are too lavish in

their use of space. Could there really be a fundamentally different path-finding

algorithm out there?

A More Space-Efficient Way to Construct Paths In fact, there is a fundamen-

tally different kind of path-finding algorithm, and it has just the properties we

need. The basic idea, proposed by Savitch in 1970, is a clever use of the divide-

and-conquer principle. It subsequently inspired the trick for reducing the space

requirements in the Sequence Alignment Problem; so the overall approach may

remind you of what we discussed there, in Section 6.7. Our plan, as before,

is to find a clever way to reuse space, admittedly at the expense of increasing

the time spent. Neither depth-first search nor breadth-first search is nearly ag-

gressive enough in its reuse of space; both need to maintain a large history at

all times. We need a way to solve half the problem, throw away almost all the

intermediate work, and then solve the other half of the problem.

The key is a procedure that we will call Path(C1, C2, L). It determines

whether there is a sequence of operators, consisting of at most L steps, that

leads from configuration C1 to configuration C2. So our initial problem is to

determine the result (yes or no) of Path(C0, C∗, 2n). Breadth-first search can

be viewed as the following dynamic programming implementation of this

procedure: To determine Path(C1, C2, L), we first determine all C′ for which

Path(C1, C′, L − 1) holds; we then see, for each such C′, whether any operator

leads directly from C′ to C2.

This indicates some of the wastefulness, in terms of space, that breadth-

first search entails. We are generating a huge number of intermediate config-

urations just to reduce the parameter L by one. More effective would be to

try determining whether there is any configuration C′ that could serve as the

midpoint of a path from C1 to C2. We could first generate all possible midpoints

C′. For each C′, we then check recursively whether we can get from C1 to C′

in at most L/2 steps; and also whether we can get from C′ to C2 in at most

L/2 steps. This involves two recursive calls, but we care only about the yes/no

outcome of each; other than this, we can reuse space from one to the next.



542 Chapter 9 PSPACE: A Class of Problems beyond NP

Does this really reduce the space usage to a polynomial amount? We first

write down the procedure carefully, and then analyze it. We will think of L as

a power of 2, which it is for our purposes.

Path(C1, C2, L)

If L = 1 then

If there is an operator O converting C1 to C2 then

return ‘‘yes’’

Else

return ‘‘no’’

Endif

Else (L > 1)

Enumerate all configurations C′ using an n-bit counter

For each C′ do the following:

Compute x = Path(C1, C′, ⌈L/2⌉)

Delete all intermediate work, saving only the return value x

Compute y = Path(C′, C2, ⌈L/2⌉)

Delete all intermediate work, saving only the return value y

If both x and y are equal to ‘‘yes’’, then return ‘‘yes’’

Endfor

If ‘‘yes’’ was not returned for any C′ then

Return ‘‘no’’

Endif

Endif

Again, note that this procedure solves a generalization of our original

question, which simply asked for Path(C0, C∗, 2n). This does mean, however,

that we should remember to view L as an exponentially large parameter:

log L = n.

Analyzing the Algorithm

The following claim therefore implies that Planning can be solved in polyno-

mial space.

(9.8) Path(C1, C2, L) returns “yes” if and only if there is a sequence of

operators of length at most L leading from C1 to C2. Its space usage is polynomial

in n, k, and log L.

Proof. The correctness follows by induction on L. It clearly holds when L = 1,

since all operators are considered explicitly. Now consider a larger value of

L. If there is a sequence of operators from C1 to C2, of length L′ ≤ L, then

there is a configuration C′ that occurs at position ⌈L′/2⌉ in this sequence. By



9.5 Proving Problems PSPACE-Complete 543

induction, Path(C1, C′, ⌈L/2⌉) and Path(C′, C2, ⌈L/2⌉) will both return “yes,”

and so Path(C1, C2, L) will return “yes.” Conversely, if there is a configuration

C′ so that Path(C1, C′, ⌈L/2⌉) and Path(C′, C2, ⌈L/2⌉) both return “yes,” then

the induction hypothesis implies that there exist corresponding sequences

of operators; concatenating these two sequences, we obtain a sequence of

operators from C1 to C2 of length at most L.

Now we consider the space requirements. Aside from the space spent

inside recursive calls, each invocation of Path involves an amount of space

polynomial in n, k, and log L. But at any given point in time, only a single

recursive call is active, and the intermediate work from all other recursive calls

has been deleted. Thus, for a polynomial function p, the space requirement

S(n, k, L) satisfies the recurrence

S(n, k, L) ≤ p(n, k, log L) + S(n, k, ⌈L/2⌉).

S(n, k, 1) ≤ p(n, k, 1).

Unwinding the recurrence for O(log L) levels, we obtain the bound S(n, k, L) =

O(log L · p(n, k, log L)), which is a polynomial in n, k, and log L.

If dynamic programming has an opposite, this is it. Back when we were

solving problems by dynamic programming, the fundamental principle was to

save all the intermediate work, so you don’t have to recompute it. Now that

conserving space is our goal, we have just the opposite priorities: throw away

all the intermediate work, since it’s just taking up space and it can always be

recomputed.

As we saw when we designed the space-efficient Sequence Alignment

Algorithm, the best strategy often lies somewhere in between, motivated by

these two approaches: throw away some of the intermediate work, but not so

much that you blow up the running time.

9.5 Proving Problems PSPACE-Complete
When we studied NP, we had to prove a first problem NP-complete directly

from the definition of NP. After Cook and Levin did this for Satisfiability, many

other NP-complete problems could follow by reduction.

A similar sequence of events followed for PSPACE, shortly after the results

for NP. Recall that we defined PSPACE-completeness, by direct analogy with

NP-completeness, in Section 9.1. The natural analogue of Circuit Satisfiability

and 3-SAT for PSPACE is played by QSAT, and Stockmeyer and Meyer (1973)

proved

(9.9) QSAT is PSPACE-complete.



544 Chapter 9 PSPACE: A Class of Problems beyond NP

This basic PSPACE-complete problem can then serve as a good “root” from

which to discover other PSPACE-complete problems. By strict analogy with the

case of NP, it’s easy to see from the definition that if a problem Y is PSPACE-

complete, and a problem X in PSPACE has the property that Y ≤P X, then X is

PSPACE-complete as well.

Our goal in this section is to show an example of such a PSPACE-

completeness proof, for the case of the Competitive Facility Location Problem;

we will do this by reducing QSAT to Competitive Facility Location. In addition

to establishing the hardness of Competitive Facility Location, the reduction

also gives a sense for how one goes about showing PSPACE-completeness

results for games in general, based on their close relationship to quantifiers.

We note that Planning can also be shown to be PSPACE-complete by a

reduction from QSAT, but we will not go through that proof here.

Relating Quantifiers and Games

It is actually not surprising at all that there should be a close relation between

quantifiers and games. Indeed, we could have equivalently defined QSAT as the

problem of deciding whether the first player has a forced win in the following

Competitive 3-SAT game. Suppose we fix a formula �(x1, . . . , xn) consisting,

as in QSAT, of a conjunction of length-3 clauses. Two players alternate turns

picking values for variables: the first player picks the value of x1, then the

second player picks the value of x2, then the first player picks the value of

x3, and so on. We will say that the first player wins if �(x1, . . . , xn) ends up

evaluating to 1, and the second player wins if it ends up evaluating to 0.

When does the first player have a forced win in this game (i.e., when does

our instance of Competitive 3-SAT have a yes answer)? Precisely when there

is a choice for x1 so that for all choices of x2 there is a choice for x3 so that . . .

and so on, resulting in �(x1, . . . , xn) evaluating to 1. That is, the first player

has a forced win if and only if (assuming n is an odd number)

∃x1∀x2
. . . ∃xn−2∀xn−1∃xn�(x1, . . . , xn).

In other words, our Competitive 3-SAT game is directly equivalent to the

instance of QSAT defined by the same Boolean formula �, and so we have

proved the following.

(9.10) QSAT ≤P Competitive 3-SAT and Competitive 3-SAT ≤P QSAT.

Proving Competitive Facility Location is PSPACE-Complete

Statement (9.10) moves us into the world of games. We use this connection to

establish the PSPACE-completeness of Competitive Facility Location.



9.5 Proving Problems PSPACE-Complete 545

(9.11) Competitive Facility Location is PSPACE-complete.

Proof. We have already shown that Competitive Facility Location is in PSPACE.

To prove it is PSPACE-complete, we now show that Competitive 3-SAT ≤P Com-

petitive Facility Location. Combined with the fact that QSAT ≤P Competitive

3-SAT, this will show that QSAT ≤P Competitive Facility Location and hence

will establish the PSPACE-completeness result.

We are given an instance of Competitive 3-SAT, defined by a formula �.

� is the conjunction of clauses

C1 ∧ C2 ∧ . . . ∧ Ck;

each Cj has length 3 and can be written Cj = tj1 ∨ tj2 ∨ tj3. As before, we will

assume that there is an odd number n of variables. We will also assume,

quite naturally, that no clause contains both a term and its negation; after all,

such a clause would be automatically satisfied by any truth assignment. We

must show how to encode this Boolean structure in the graph that underlies

Competitive Facility Location.

We can picture the instance of Competitive 3-SAT as follows. The players

alternately select values in a truth assignment, beginning and ending with

Player 1; at the end, Player 2 has won if she can select a clause Cj in which

none of the terms has been set to 1. Player 1 has won if Player 2 cannot do

this.

It is this notion that we would like to encode in an instance of Competitive

Facility Location: that the players alternately make a fixed number of moves,

in a highly constrained fashion, and then there’s a final chance by Player 2

to win the whole thing. But in its general form, Competitive Facility Location

looks much more wide-open than this. Whereas the players in Competitive 3-

SAT must set one variable at a time, in order, the players in Competitive Facility

Location can jump all over the graph, choosing nodes wherever they want.

Our fundamental trick, then, will be to use the values bi on the nodes to

tightly constrain where the players can move, under any “reasonable” strategy.

In other words, we will set things up so that if the either of the players deviates

from a particular narrow course, he or she will lose instantly.

As with our more complicated NP-completeness reductions in Chapter 8,

the construction will have gadgets to represent assignments to the variables,

and further gadgets to represent the clauses. Here is how we encode the

variables. For each variable xi, we define two nodes vi, v′
i in the graph G,

and include an edge (vi, v′
i), as in Figure 9.2. Selecting vi will represent setting

xi = 1; selecting v′
i will represent xi = 0. The constraint that the chosen variables



546 Chapter 9 PSPACE: A Class of Problems beyond NP

Goal: 101

Variable 1

Clause 1

1000 1000

Variable 2 100 100

Variable 3 10 10

1

Figure 9.2 The reduction from Competitive 3-SAT to Competitive Facility Location.

must form an independent set naturally prevents both vi and v′
i from being

chosen. At this point, we do not define any other edges.

How do we get the players to set the variables in order—first x1, then x2,

and so forth? We place values on v1 and v′
1 so high that Player 1 will lose

instantly if he does not choose them. We place somewhat lower values on v2

and v′
2, and continue in this way. Specifically, for a value c ≥ k + 2, we define

the node values bvi
and bv′

i
to be c1+n−i. We define the bound that Player 2 is

trying to achieve to be

B = cn−1 + cn−3 + . . . + c2 + 1.

Let’s pause, before worrying about the clauses, to consider the game

played on this graph. In the opening move of the game, Player 1 must select

one of v1 or v′
1 (thereby obliterating the other one); for if not, then Player

2 will immediately select one of them on her next move, winning instantly.

Similarly, in the second move of the game, Player 2 must select one of v2 or

v′
2. For otherwise, Player 1 will select one on his next move; and then, even if

Player 2 acquired all the remaining nodes in the graph, she would not be able

to meet the bound B. Continuing by induction in this way, we see that to avoid

an immediate loss, the player making the ith move must select one of vi or v′
i.

Note that our choice of node values has achieved precisely what we wanted:

The players must set the variables in order. And what is the outcome on this

graph? Player 2 ends up with a total of value of cn−1 + cn−3 + . . . + c2 = B − 1:

she has lost by one unit!

We now complete the analogy with Competitive 3-SAT by giving Player

2 one final move on which she can try to win. For each clause Cj, we define

a node cj with value bcj
= 1 and an edge associated with each of its terms as



Solved Exercises 547

follows. If t = xi, we add an edge (cj , vi); if t = xi, we add an edge (cj , v′
i). In

other words, we join cj to the node that represents the term t.

This now defines the full graph G. We can verify that, because their values

are so small, the addition of the clause nodes did not change the property that

the players will begin by selecting the variable nodes {vi, v′
i} in the correct

order. However, after this is done, Player 2 will win if and only if she can

select a clause node cj that is not adjacent to any selected variable node—in

other words, if and only the truth assignment defined alternately by the players

failed to satisfy some clause.

Thus Player 2 can win the Competitive Facility Location instance we have

defined if and only if she can win the original Competitive 3-SAT instance. The

reduction is complete.

Solved Exercises

Solved Exercise 1

Self-avoiding walks are a basic object of study in the area of statistical physics;

they can be defined as follows. Let L denote the set of all points in R2 with

integer coordinates. (We can think of these as the “grid points” of the plane.)

A self-avoiding walk W of length n is a sequence of points (p1, p2, . . . , pn)

drawn from L so that

(i) p1 = (0, 0). (The walk starts at the origin.)

(ii) No two of the points are equal. (The walk “avoids” itself.)

(iii) For each i = 1, 2, . . . , n − 1, the points pi and pi+1 are at distance 1 from

each other. (The walk moves between neighboring points in L.)

Self-avoiding walks (in both two and three dimensions) are used in physical

chemistry as a simple geometric model for the possible conformations of long-

chain polymer molecules. Such molecules can be viewed as a flexible chain

of beads that flops around, adopting different geometric layouts; self-avoiding

walks are a simple combinatorial abstraction for these layouts.

A famous unsolved problem in this area is the following. For a natural

number n ≥ 1, let A(n) denote the number of distinct self-avoiding walks

of length n. Note that we view walks as sequences of points rather than

sets; so two walks can be distinct even if they pass through the same set

of points, provided that they do so in different orders. (Formally, the walks

(p1, p2, . . . , pn) and (q1, q2, . . . , qn) are distinct if there is some i (1≤ i ≤ n)

for which pi �= qi.) See Figure 9.3 for an example. In polymer models based on

self-avoiding walks, A(n) is directly related to the entropy of a chain molecule,



548 Chapter 9 PSPACE: A Class of Problems beyond NP

(a)

(0,1) (1,1)

(0,0) (1,0)

(b)

(0,1) (1,1)

(0,0) (1,0)

(c)

(2,1)

(1,0) (2,0)(0,0)

Figure 9.3 Three distinct self-avoiding walks of length 4. Note that although walks (a)

and (b) involve the same set of points, they are considered different walks because they

pass through them in a different order.

and so it appears in theories concerning the rates of certain metabolic and

organic synthesis reactions.

Despite its importance, no simple formula is known for the value A(n). In-

deed, no algorithm is known for computing A(n) that runs in time polynomial

in n.

(a) Show that A(n) ≥ 2n−1 for all natural numbers n ≥ 1.

(b) Give an algorithm that takes a number n as input, and outputs A(n) as a

number in binary notation, using space (i.e., memory) that is polynomial

in n.



Solved Exercises 549

(Thus the running time of your algorithm can be exponential, as long as its

space usage is polynomial. Note also that polynomial here means “polynomial

in n,” not “polynomial in log n.” Indeed, by part (a), we see that it will take

at least n − 1 bits to write the value of A(n), so clearly n − 1 is a lower bound

on the amount of space you need for producing a correct answer.)

Solution We consider part (b) first. One’s first thought is that enumerating all

self-avoiding walks sounds like a complicated prospect; it’s natural to imagine

the search as growing a chain starting from a single bead, exploring possible

conformations, and backtracking when there’s no way to continue growing

and remain self-avoiding. You can picture attention-grabbing screen-savers that

do things like this, but it seems a bit messy to write down exactly what the

algorithm would be.

So we back up; polynomial space is a very generous bound, and we

can afford to take an even more brute-force approach. Suppose that instead

of trying just to enumerate all self-avoiding walks of length n, we simply

enumerate all walks of length n, and then check which ones turn out to be self-

avoiding. The advantage of this is that the space of all walks is much easier

to describe than the space of self-avoiding walks.

Indeed, any walk (p1, p2, . . . , pn) on the set L of grid points in the plane

can be described by the sequence of directions it takes. Each step from pi to pi+1

in the walk can be viewed as moving in one of four directions: north, south,

east, or west. Thus any walk of length n can be mapped to a distinct string

of length n − 1 over the alphabet {N , S, E , W}. (The three walks in Figure 9.3

would be ENW, NES, and EEN.) Each such string corresponds to a walk of

length n, but not all such strings correspond to walks that are self-avoiding:

for example, the walk NESW revisits the point (0, 0).

We can use this encoding of walks for part (b) of the question as follows.

Using a counter in base 4, we enumerate all strings of length n − 1 over the

alphabet {N , S, E , W}, by viewing this alphabet equivalently as {0, 1, 2, 3}. For

each such string, we construct the corresponding walk and test, in polynomial

space, whether it is self-avoiding. Finally, we increment a second counter A

(initialized to 0) if the current walk is self-avoiding. At the end of this algorithm,

A will hold the value of A(n).

Now we can bound the space used by this algorithm as follows. The first

counter, which enumerates strings, has n − 1positions, each of which requires

two bits (since it can take four possible values). Similarly, the second counter

holding A can be incremented at most 4n−1 times, and so it too needs at most

2n bits. Finally, we use polynomial space to check whether each generated

walk is self-avoiding, but we can reuse the same space for each walk, and so

the space needed for this is polynomial as well.



550 Chapter 9 PSPACE: A Class of Problems beyond NP

The encoding scheme also provides a way to answer part (a). We observe

that all walks that can be encoded using only the letters {N , E} are self-avoiding,

since they only move up and to the right in the plane. As there are 2n−1 strings

of length n − 1over these two letters, there are at least 2n−1 self-avoiding walks;

in other words, A(n) ≥ 2n−1.

(Note that we argued earlier that our encoding technique also provides an

upper bound, showing immediately that A(n) ≤ 4n−1.)

Exercises

1. Let’s consider a special case of Quantified 3-SAT in which the underlying

Boolean formula has no negated variables. Specifically, let �(x1, . . . , xn)

be a Boolean formula of the form

C1 ∧ C2 ∧ . . . ∧ Ck ,

where each Ci is a disjunction of three terms. We say � is monotone if

each term in each clause consists of a nonnegated variable—that is, each

term is equal to xi, for some i, rather than xi.

We define Monotone QSAT to be the decision problem

∃x1∀x2
. . . ∃xn−2∀xn−1∃xn�(x1, . . . , xn)?

where the formula � is monotone.

Do one of the following two things: (a) prove that Monotone QSAT is

PSPACE-complete; or (b) give an algorithm to solve arbitrary instances of

Monotone QSAT that runs in time polynomial in n. (Note that in (b), the

goal is polynomial time, not just polynomial space.)

2. Consider the following word game, which we’ll call Geography . You have

a set of names of places, like the capital cities of all the countries in the

world. The first player begins the game by naming the capital city c of

the country the players are in; the second player must then choose a city

c′ that starts with the letter on which c ends; and the game continues in

this way, with each player alternately choosing a city that starts with the

letter on which the previous one ended. The player who loses is the first

one who cannot choose a city that hasn’t been named earlier in the game.

For example, a game played in Hungary would start with “Budapest,”

and then it could continue (for example), “Tokyo, Ottawa, Ankara, Ams-

terdam, Moscow, Washington, Nairobi.”

This game is a good test of geographical knowledge, of course, but

even with a list of the world’s capitals sitting in front of you, it’s also a

major strategic challenge. Whichword should you pick next, to try forcing



Notes and Further Reading 551

your opponent into a situation where they’ll be the one who’s ultimately

stuck without a move?

To highlight the strategic aspect, we define the following abstract

version of the game, which we call Geography on a Graph. Here, we have

a directed graph G = (V , E), and a designated start node s ∈ V. Players

alternate turns starting from s; each player must, if possible, follow an

edge out of the current node to a node that hasn’t been visited before. The

player who loses is the first one who cannot move to a node that hasn’t

been visited earlier in the game. (There is a direct analogy to Geography ,

with nodes corresponding to words.) In other words, a player loses if the

game is currently at node v, and for edges of the form (v, w), the node w

has already been visited.

Prove that it is PSPACE-complete to decide whether the first player

can force a win in Geography on a Graph.

3. Give a polynomial-time algorithm to decide whether a player has a forced

win in Geography on a Graph, in the special case when the underlying

graph G has no directed cycles (in other words, when G is a DAG).

Notes and Further Reading

PSPACE is just one example of a class of intractable problems beyond NP;

charting the landscape of computational hardness is the goal of the field of

complexity theory. There are a number of books that focus on complexity

theory; see, for example, Papadimitriou (1995) and Savage (1998).

The PSPACE-completeness of QSAT is due to Stockmeyer and Meyer

(1973).

Some basic PSPACE-completeness results for two-player games can be

found in Schaefer (1978) and in Stockmeyer and Chandra (1979). The Com-

petitive Facility Location Problem that we consider here is a stylized example

of a class of problems studied within the broader area of facility location; see,

for example, the book edited by Drezner (1995) for surveys of this topic.

Two-player games have provided a steady source of difficult questions

for researchers in both mathematics and artificial intelligence. Berlekamp,

Conway, and Guy (1982) and Nowakowski (1998) discuss some of the math-

ematical questions in this area. The design of a world-champion-level chess

program was for fifty years the foremost applied challenge problem in the field

of computer game-playing. Alan Turing is known to have worked on devising

algorithms to play chess, as did many leading figures in artificial intelligence

over the years. Newborn (1996) gives a readable account of the history of work



552 Chapter 9 PSPACE: A Class of Problems beyond NP

on this problem, covering the state of the art up to a year before IBM’s Deep

Blue finally achieved the goal of defeating the human world champion in a

match.

Planning is a fundamental problem in artificial intelligence; it features

prominently in the text by Russell and Norvig (2002) and is the subject of a

book by Ghallab, Nau, and Traverso (2004). The argument that Planning can

be solved in polynomial space is due to Savitch (1970), who was concerned

with issues in complexity theory rather than the Planning Problem per se.

Notes on the Exercises Exercise 1 is based on a problem we learned from

Maverick Woo and Ryan Williams; Exercise 2 is based on a result of Thomas

Schaefer.


